
The Making of Bruce Lee II

This article was originally published in
Vandalism News #64 and has been
reprinted with kind permission from Jazzcat.
The original article can be found here:
http://csdb.dk/release/?id=138976

Background
My parents bought a C64 as a Christmas
gift to the whole family in 1983 but us kids
were not allowed to play on it, only do
serious stuff. For that reason it took a while
to get to the point where we had a lot of
games for it. I spent most of the time
learning how to program instead. In my
Mickey Mouse diary from 1984 I wrote every
day about games I was creating. Eventually,
we got access to games and I played Bruce
Lee some time in the mid 1980s. I loved the
game. It was an adventure to play. It was
mysterious and I felt like anything could
happen. I played it to the end, like I did with
a lot of games back then. I actually had a list
of completed games on one of my diskettes
since achievements and trophies weren't
invented yet.

I first read about Bruce Lee II in July 2013 in
a thread on the Lemon64 forum. It was a
poll asking if people wanted Bruce Lee II to
be ported to a real Commodore 64.
Someone had done a spiritual successor to
the original Bruce Lee game but for PC. I
tried it and saw that it had a mode where
you could make it look like it was run on a
C64. People in the thread were trying to
organize development of the C64
conversion when I dropped in.

At that time I was working on the Cosmos
conversion with my brother and didn't have
time for anything else at all. But in time
Cosmos was finished and we started talking
about what to do next. We were talking
about Scramble or variants of it with

procedurally generated levels. I was thinking
about a point-and-click adventure. After a
while we agreed on Bruce Lee II since the
attempts to start a conversion in the
Lemon64 thread were cooling down and it
looked like a fairly simple conversion with its
flick screen scrolling. Cosmos was so much
about optimizing screen clearing and
software sprite drawing that it felt easy to do
static backgrounds.

The Prototype
I prepared a new empty development
project and started to move reusable code
from Cosmos over to a core library where
the games could share code. I worked in
Sublime Text and used DAsm to assemble
the code. DAsm is the only assembler I
found that can have macros with arguments
that aren’t defined in the first assembly
pass, so I’m sticking to that for now. I did all
quick iteration testing in Vice and
sometimes sent the stuff over to my C64
using a custom MIDI server solution to try it
on my bread box machine. I use Mercurial
for source control and I have a Mac Mini as
the main server to share the code with my
brother. I have an automatic backup using
Pulse to a third computer and do manual
backups to a cloud service to be pretty sure
nothing is lost.

After a while my brother told me that he
wouldn't be able to put enough time into the
project, so he wanted to back out. I decided
to continue on my own since I had stated
that we were taking over the conversion in
the Lemon64 thread and I didn't want to
disappoint anyone.

I started out with C64 graphics that Mase
from the forum had done and I used it to do
my first iterations of screen drawing. After a
while I realized that to be able to modify the
data format it would be better to convert the

http://csdb.dk/release/?id=138976

data from a more generic format. So I made
PNG images of the original graphics which
e5frog on the forum received from Bruno R
Marcos, who made the PC version, and
created a conversion script that baked the
format I wanted. I knew that bitmap was
necessary for at least some of the screens
so I used character mode wherever possible
and bitmap where needed, since bitmap is
slower to draw. Some screens weren't even
possible to reproduce in bitmap mode. The
water in the PC version was made using a
semi transparent blue rectangle on top of
standard C64 colors so that was just not
possible to get exactly right.

Graphics Pipeline
I created a level editor using C# and WPF
for the physics information, doors and items
you can pick up. This again made it easy to
change the output format later in the project
and it was changed a number of times. I
made a conversion script to convert the
level editor file into something that the game
could use effectively. I made a sprite
conversion script as well. Most of the
Cosmos sprites were made in SpritePad but
the Bruce Lee II characters would not fit in
one sprite image each so it would be difficult
to work like that. Instead I converted PNG
files exported from Aseprite where I
recreated the animations. The conversion
step cut sprites from the PNG files to create
lots of sprite images. After some
compression tests done on the screen data I
realized this wouldn't fit in memory so I
started planning streaming the graphics
while the game is playing.

Graphics Streaming
To make streaming work I needed a turbo
loader, so I wrote one based on the Covert
Bitops 2-bit loader. I wanted maximum
compatibility so I didn't use the ATN bit in
the loader because you have to turn off all
other drives while playing the game if that is
used. The downside is that sprites mess up

the timing if they are drawn by the VIC-II at
the same time as the loader reads data from
the drive. I solved this by only loading while
the VIC-II was drawing the border and only
if there were no sprites in the border.
Occasionally, Bruce can be partly outside
the screen but luckily not for too long so that
turned out to work really well.

I created a streaming system with trigger
boxes that indicate the rooms that needed
to be in memory. When the trigger boxes
are entered, the room data is streamed in
using the turbo loader. To avoid all waiting
time, four compressed rooms are allowed to
be in memory at the same time. There can
also be conditions on the trigger boxes to
reroute the streaming when the drawbridge
goes down early in the game.

I sketch ideas on paper or in the notes app
in my 3DS when I’m programming.
Illustration 1 below shows a scan of an early
streaming editor sketch. The blue lines
divide the screens and you can see the red
trigger box and the three adjacent screens
to keep in memory when the trigger box is
entered.

Illustration 1: Streaming editor sketch

To get everything properly converted I
recorded myself playing the PC game so I
could go back and measure pixel movement
and durations to get everything right. We did
that when converting Cosmos and it was
really boring at first but very handy in the
end. The only problem was that the PC

game had a bug that made it impossible for
me to finish the game. Bruce gets stuck
when entering the room the second time
where he gets caught by Tao-Bao. I tried it
on both my PCs with the same result.
Finally, I used a Youtube playthrough for the
last rooms so if there is anything wrong
there, you know why.

Threading
Just like Cosmos, memory became the
biggest challenge. Supporting both NTSC
and PAL wasn't a memory problem to begin
with but memory restrictions heavily
influenced the design decisions.

Cosmos was my first attempt to make an
NTSC compatible game, or rather PAL
compatible since the version me and my
brother ported was running in 60Hz. The
Cosmos game update loop was running in
sync with the TV frequency so to make
everything run at the correct speed, all
moving objects needed to have specific
speed values for NTSC and PAL. This was
cumbersome. There were no simple pixel
movements anywhere. Everything had to be
done with subpixel precision. Objects
moving in the same direction at the same
speed also needed to be synchronized
(having the same fractional position),
otherwise there was a rubber band feeling
to the movement. Also sound effects
needed to be tweaked to get the same
sound (frequency and timing). The whole
thing was solved in Cosmos by having all
NTSC specific data in a big continuous
block and using it directly. If a PAL system
was detected the whole block was
overwritten with the PAL specific data. That
way, the code didn't need to know the
system, nor do branching on the system
type and could read the settings from a fixed
address.

This way of handling the different platforms
was the first thing I wanted to change after
Cosmos so when I started to work on Bruce

Lee II I planned this from day one. I wanted
the game logic to run at the same speed on
both systems. That would make it trivial to
get the same movement speed, music and
sound effects on both NTSC and PAL. A
timer interrupt that triggers the next game
update was set up to run at 50Hz. The
update checks for input, moves characters,
checks collisions and triggers rendering.
This was all fine if it wasn't for the single
buffering. This is where the memory
restrictions come in.

The bitmap mode consumes so much
memory that it can't be double buffered. So,
with a single frame buffer, some kind of
technique must be used to synchronize
screen changes with the TV frequency to
avoid tearing. To solve this I stored graphic
update information in a circular command
queue. This is basically my double buffer.
Putting stuff in the queue can be done at
any time by the main loop. Fetching the
data, updating sprite registers and drawing
on the screen are done in sync with the
screen refresh by a raster interrupt. When
the raster has reached the bottom border,
commands are fetched from the queue until
the raster reaches the top border. Any
outstanding jobs will need to wait for the
next frame, but that rarely happens. Then it
is time to handle the status bar split where
hires and multicolor are switched and
sprites are hidden behind the bar. This is
similar to how modern graphics cards use
command queues to store render states,
with the difference that they will be read and
written in parallel on modern hardware. This
still has the potential for creating threading
issues on the C64 with the raster interrupt
interrupting the main update at any time, but
it is fairly easy to handle this if the raster
interrupt is only allowed to pull from the
queue and write to screen or sprite registers
while the main update is only allowed to
push to the queue and not update the
graphics. In general I am separating
rendering from game logic to be able to turn
off rendering for a frame in case the game

update takes too long and needs to keep
up.

Illustration 2 shows an early sketch of the
thread handling on NTSC. The upper line
represents the render thread, triggered by
the raster interrupt. It executes the jobs and
updates the turbo loader. The lower line
represents the main thread which is
triggered by the timer interrupt and updates
the game state.

Illustration 2: NTSC thread diagram

Animation
There are 138 frames of character
animations in the game and some more
frames for moving objects. Most characters
require several sprites on top of each other
to replicate all colors and pixels so in total
there are around 350 sprite images in the
game, which would consume over 20kB of
memory. To fit all that in memory some kind
of compression was needed. The first
optimization was to only store character
images for one direction and generate the
opposite image in code. Bruce's sprite
images are generated in real-time while he's
moving around by using double buffered
sprites. The sprite conversion script has the
useful property that all non-empty sprite
information is stored at the top left corner of
each sprite image. I used that to cut off the
empty space below all sprite images and
stored the useful information along with the
height of the sprite images. I then
regenerated the empty space when
decompressing in code. That wasn't enough

either so I interlaced the sprites horizontally
in memory. A sprite image is three bytes
wide and if the rightmost byte is never used
for any line in the sprite for example, I can
basically put another sprite in that space if it
is only using the leftmost byte for all lines.
Those simple compression techniques
together reduced the amount of memory
needed to store all sprite images in memory
a lot. Now, they also need to be
decompressed into memory readable from
the graphics chip. All graphics must fit within
16kB of memory and that is cut in half by
the bitmap graphics. Around 100 images
can exist at the same time in graphics
memory and that isn't enough for four
running characters at the same time. I
handle this by keeping the standing and
falling postures for all enemies in graphics
memory at all times, so they can turn fast
and fall at any time. I keep the running
animation in only one direction in graphics
memory at a time so if an enemy decides to
turn and run in the opposite direction, the
running animation frames in the other
direction needs to be decompressed first.
The PC game has delays to make the
enemy turn slowly so this is more than
enough to cover the decompression time.

Sound and Music
I made a custom music player for the
Cosmos music. I reused this but modified it
to support several songs and also sound
effects that can allocate channels
dynamically. I don't have a music editor yet
so I make the music in the assembler
source using simple macros, like play_note,
wait or arpeggio. I didn't rip the music from
Bruce Lee I because it gets more tricky to fill
the memory completely when some things
must exist at a fixed address. Instead, I
recreated the song in my own player. To get
it right I used a tool I made to reverse
engineer sound creation. It allows me to
load a SID file and record the SID registers
to a REU memory expansion cartridge in the
background while I'm analyzing what

happens each frame. Since everything is
recorded to REU memory I can fast forward
or rewind the song and step one update at a
time to see exactly what happens. The
music player is versatile enough to replicate
everything. I did the same for the sound
effects that existed in Bruce Lee I.

Some new sound effects were introduced in
the original Bruce Lee II which weren't
created with a SID from the start. It was a
challenge to replicate those. I used the
spectrum analyzer in Audacity to figure out
the frequencies used and then I tried my
best to make it sound similar. The hardest
one was Tao-Bao's laughter. I initially
planned to play it as a sample but since
memory was tight I scrapped that idea
halfway into the project.

The intro music was made by constructing
sounds in M64 that I played with using my
EPS-16+ keyboard and Sentech MIDI
interface. I also did some composing using
my guitar, which I suck at playing. I then
typed the instrument data and notes directly
into the assembler source using my macros.
I took two days of vacation from work to do
this and it took me four days to complete. I
made several attempts which I threw away
before the final piece took form.

Code Streaming
I worked on gameplay features one screen
at a time, from the first screen to the last, in
the order they were played. The code grew
and grew and after 20 screens or so I
realized that memory would not allow all
code to be in memory at all times. I had to
stream that from diskette as well. I solved
this by having two buffers of streamed code
memory. One for the current screen or area
and one for the next. I couldn't afford more
buffers so it isn't possible to go "back" when
streaming code. At some points in the game
it is impossible to go back. That became the
boundaries for the streaming code zones.
One zone is kept in memory to be run and

the next is streaming in. When the zone is
switched, the newly streamed code buffer is
used and the old becomes the next to
stream in. This made it possible to cram the
last features into the game and actually
finish it.

Diskette Layout
The level editor exporter script outputs the
streaming files in the order they are loaded
when the game is played. To reduce the
number of track changes while the game is
played (because of the sound), the files
needs to be placed close to each other and
also in the loading order. I created a python
script to bake disk images from files with
specific requirements to make it possible for
all files to be stored continuously on the
diskette. You can hear when you get close
to the end of the game how the drive seeks
back to the first files to load them just before
the final battle to get ready for the next
round.

Closing up
Near the end of the project I was very tired.
It takes considerable effort to put the last
pieces together to form a finished and
polished game and in the end I devoted
myself entirely to getting Bruce Lee II
finished. I tested the game extensively on all
my hardware and other hardware through
emulation. I considered building an
automatic testing system that played
through the game without me so I could
concentrate on the last pieces without
worries about breaking stuff. This system
would be running at night chasing
unexpected bugs. I never built that system,
but maybe it will be something for future
projects.

Learning
During the course of this game I discovered
a couple of quirks of the C64 that I didn't
know before. They were not discovered by
me first, I just didn't know about them

before. The first quirk was sprite ghosting.
When Bruce was jumping or climbing up in
the border the turbo loader reported read
errors on PAL machines. It was strange
because the sprite images weren't
overlapping with raster lines where the turbo
loader was running. The loader was running
in the lower border and the sprites were
displayed in the top border. Since there had
to be something stealing CPU cycles from
the loader, I made a test where I created a
pattern of background color changes on
screen while it was blanked. When I placed
a sprite in the top border I could see a
disturbance in the otherwise stable pattern
at the top (even when blanked), but also at
the bottom! After asking around I got the
answer. The sprite y-position is 8 bits and so
is the raster compare, even if the raster line
is 9 bits. So a sprite with a y-position such
that there is a line >255 whose lower 8 bits
matches the y-position will create a ghosted
sprite.

I learned about the 6581 SID bug causing
the ADSR to lock up for 30 ms if switching
from long release to short attack for
example. I noticed this when Bruce was
climbing. The climbing sound changed
slightly just after Bruce came up from the
water because the water splash sound
effect had a long release. I handled this by
adding a command in the music player that
can be used to manually reset the voice a
couple of frames before a note with short
attack.

Perhaps the greatest difference from the PC
version was the status bar. The reason it

isn't inverted is because, in order to make it
safe for Bruce to pass below it the lowest
line must be drawn using a foreground color.
I need some time to move Bruce's sprites
from off screen to on screen during one line
at the same time as the hires/multicolor
switch and background color switch. It gets
a bit messy if you allow sprites near it and
also are trying to support accelerator cards
and not rely on exact timing. So the black
color in the status bar is the foreground
color, filled with 1s. I thought that if black
also was used as the color for multicolor
pixels filled with 11s the color would still be
black and I have the whole line to make the
switch. It turned out that there is a quirk in
the VIC-II chip where it will choose another
color for one cycle if you switch from hires to
multicolor. The color for the multicolor pixel
10 will be chosen instead of the expected 11
for one cycle. It turned up on the two
leftmost characters in the status bar and I
managed to hide it by setting both the upper
and lower nibble of character memory used
for bitmap colors to black.

After the game release I heard that this
cycle glitch was still visible on some
machines further to the right in the status
bar. I can't reproduce this on my machines
or in Vice so there must be some odd timing
difference that I'm not aware of. This and
other small things can certainly be
improved, but it is time to move on. There
would never be a next game if I just
improved the existing one to perfection.

I'll see you later!

Ps. I have been asked several times why I didn’t sell the game instead of
giving it away. Well, it wouldn’t be right to make money on someone else’s
name and someone else’s game. I’ll consider selling if I can create something
original, but it is a nice gesture to give away your games. I’m happy if people
enjoy them. I’m not in it for the money.

References
Aseprite - http :// www . aseprite . org /
Audacity - http :// sourceforge . net / projects / audacity /
Bruce Lee I - http :// www . c 64. com / games /90
Bruce Lee II - http :// kollektivet . nu / brucelee 2
Bruce Lee II PC - http :// www . bruneras . com / games _ bruce 2. php
Cosmos - http :// kollektivet . nu / cosmos
Covert Bitops Loader - http :// cadaver . homeftp . net / rants / irqload . htm
DAsm - http :// dasm - dillon . sourceforge . net
M64 - http :// kollektivet . nu / m 64
Mercurial - http :// mercurial . selenic . com
Pulse - https :// ind . ie / labs
SID Hard Restart - http :// www . df . lth . se /~ triad / krad / sidmidi . html
SpritePad - http :// www . coder . myby . co . uk / spritepad . htm
Sublime Text - http :// www . sublimetext . com
The Lemon64 thread that started it - http :// www . lemon 64. com / forum / viewtopic . php ? t =48721

http://www.aseprite.org/
http://cadaver.homeftp.net/rants/irqload.htm
http://cadaver.homeftp.net/rants/irqload.htm
http://cadaver.homeftp.net/rants/irqload.htm
http://cadaver.homeftp.net/rants/irqload.htm
http://cadaver.homeftp.net/rants/irqload.htm
http://cadaver.homeftp.net/rants/irqload.htm
http://cadaver.homeftp.net/rants/irqload.htm
http://cadaver.homeftp.net/rants/irqload.htm
http://cadaver.homeftp.net/rants/irqload.htm
http://cadaver.homeftp.net/rants/irqload.htm
http://cadaver.homeftp.net/rants/irqload.htm
http://cadaver.homeftp.net/rants/irqload.htm
http://cadaver.homeftp.net/rants/irqload.htm
http://www.lemon64.com/forum/viewtopic.php?t=48721
http://www.lemon64.com/forum/viewtopic.php?t=48721
http://www.lemon64.com/forum/viewtopic.php?t=48721
http://www.lemon64.com/forum/viewtopic.php?t=48721
http://www.lemon64.com/forum/viewtopic.php?t=48721
http://www.lemon64.com/forum/viewtopic.php?t=48721
http://www.lemon64.com/forum/viewtopic.php?t=48721
http://www.lemon64.com/forum/viewtopic.php?t=48721
http://www.lemon64.com/forum/viewtopic.php?t=48721
http://www.lemon64.com/forum/viewtopic.php?t=48721
http://www.lemon64.com/forum/viewtopic.php?t=48721
http://www.lemon64.com/forum/viewtopic.php?t=48721
http://www.lemon64.com/forum/viewtopic.php?t=48721
http://www.lemon64.com/forum/viewtopic.php?t=48721
http://www.lemon64.com/forum/viewtopic.php?t=48721
http://www.lemon64.com/forum/viewtopic.php?t=48721
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://www.coder.myby.co.uk/spritepad.htm
http://www.coder.myby.co.uk/spritepad.htm
http://www.coder.myby.co.uk/spritepad.htm
http://www.coder.myby.co.uk/spritepad.htm
http://www.coder.myby.co.uk/spritepad.htm
http://www.coder.myby.co.uk/spritepad.htm
http://www.coder.myby.co.uk/spritepad.htm
http://www.coder.myby.co.uk/spritepad.htm
http://www.coder.myby.co.uk/spritepad.htm
http://www.coder.myby.co.uk/spritepad.htm
http://www.coder.myby.co.uk/spritepad.htm
http://www.coder.myby.co.uk/spritepad.htm
http://www.coder.myby.co.uk/spritepad.htm
http://www.coder.myby.co.uk/spritepad.htm
http://www.coder.myby.co.uk/spritepad.htm
http://www.df.lth.se/~triad/krad/sidmidi.html
http://www.df.lth.se/~triad/krad/sidmidi.html
http://www.df.lth.se/~triad/krad/sidmidi.html
http://www.df.lth.se/~triad/krad/sidmidi.html
http://www.df.lth.se/~triad/krad/sidmidi.html
http://www.df.lth.se/~triad/krad/sidmidi.html
http://www.df.lth.se/~triad/krad/sidmidi.html
http://www.df.lth.se/~triad/krad/sidmidi.html
http://www.df.lth.se/~triad/krad/sidmidi.html
http://www.df.lth.se/~triad/krad/sidmidi.html
http://www.df.lth.se/~triad/krad/sidmidi.html
http://www.df.lth.se/~triad/krad/sidmidi.html
http://www.df.lth.se/~triad/krad/sidmidi.html
http://www.df.lth.se/~triad/krad/sidmidi.html
http://www.df.lth.se/~triad/krad/sidmidi.html
http://www.df.lth.se/~triad/krad/sidmidi.html
http://www.df.lth.se/~triad/krad/sidmidi.html
https://ind.ie/labs
https://ind.ie/labs
https://ind.ie/labs
https://ind.ie/labs
https://ind.ie/labs
https://ind.ie/labs
https://ind.ie/labs
http://mercurial.selenic.com/
http://mercurial.selenic.com/
http://mercurial.selenic.com/
http://mercurial.selenic.com/
http://mercurial.selenic.com/
http://mercurial.selenic.com/
http://mercurial.selenic.com/
http://kollektivet.nu/m64
http://kollektivet.nu/m64
http://kollektivet.nu/m64
http://kollektivet.nu/m64
http://kollektivet.nu/m64
http://kollektivet.nu/m64
http://kollektivet.nu/m64
http://kollektivet.nu/m64
http://dasm-dillon.sourceforge.net/
http://dasm-dillon.sourceforge.net/
http://dasm-dillon.sourceforge.net/
http://dasm-dillon.sourceforge.net/
http://dasm-dillon.sourceforge.net/
http://dasm-dillon.sourceforge.net/
http://dasm-dillon.sourceforge.net/
http://dasm-dillon.sourceforge.net/
http://dasm-dillon.sourceforge.net/
http://kollektivet.nu/cosmos
http://kollektivet.nu/cosmos
http://kollektivet.nu/cosmos
http://kollektivet.nu/cosmos
http://kollektivet.nu/cosmos
http://kollektivet.nu/cosmos
http://kollektivet.nu/cosmos
http://www.bruneras.com/games_bruce2.php
http://www.bruneras.com/games_bruce2.php
http://www.bruneras.com/games_bruce2.php
http://www.bruneras.com/games_bruce2.php
http://www.bruneras.com/games_bruce2.php
http://www.bruneras.com/games_bruce2.php
http://www.bruneras.com/games_bruce2.php
http://www.bruneras.com/games_bruce2.php
http://www.bruneras.com/games_bruce2.php
http://www.bruneras.com/games_bruce2.php
http://www.bruneras.com/games_bruce2.php
http://www.bruneras.com/games_bruce2.php
http://www.bruneras.com/games_bruce2.php
http://kollektivet.nu/brucelee2
http://kollektivet.nu/brucelee2
http://kollektivet.nu/brucelee2
http://kollektivet.nu/brucelee2
http://kollektivet.nu/brucelee2
http://kollektivet.nu/brucelee2
http://kollektivet.nu/brucelee2
http://kollektivet.nu/brucelee2
http://www.c64.com/games/90
http://www.c64.com/games/90
http://www.c64.com/games/90
http://www.c64.com/games/90
http://www.c64.com/games/90
http://www.c64.com/games/90
http://www.c64.com/games/90
http://www.c64.com/games/90
http://www.c64.com/games/90
http://www.c64.com/games/90
http://sourceforge.net/projects/audacity/
http://sourceforge.net/projects/audacity/
http://sourceforge.net/projects/audacity/
http://sourceforge.net/projects/audacity/
http://sourceforge.net/projects/audacity/
http://sourceforge.net/projects/audacity/
http://sourceforge.net/projects/audacity/
http://sourceforge.net/projects/audacity/
http://sourceforge.net/projects/audacity/
http://sourceforge.net/projects/audacity/
http://www.aseprite.org/
http://www.aseprite.org/
http://www.aseprite.org/
http://www.aseprite.org/
http://www.aseprite.org/
http://www.aseprite.org/
http://www.aseprite.org/

